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Proof Polynomials vs. A-terms 

Sergei N. Artemov * 

Abstract 

The Logic of Proofs (CV) introduced in [2] provides a basic framework for the for- 
malization of reasoning about proofs. It incorporates proof terms into the propositional 
language, using labeled logical operators "t:" with the intended reading of t: F being 
"t is a proof of F'. CV is supplied with an exact provability semantics in Peano Arith- 
metic, a simple axiom system, and completeness and decidability theorems. CV naturally 
expresses a number of constructions of logic involving the notion of proof, which have 
previously been formulated and/or interpreted in an informal metalanguage, e.g. modal 
logic, Intuitionistic logic with its Brouwer-Heyting-Kolmogorov semantics, etc. ([2], [3]). 
In the current paper we demonstrate how the typed A-calculus and the modal A-calculus 
can be realized in the Logic of Proofs. 

1    Introduction 

The Logic of Proofs (CV) incorporates proof terms directly into the propositional language 
using new logical operators t: labeled by special proof terms with the intended reading of t: F 
being H is a proof of F" (cf. [2]). Three basic operations on proofs are postulated: application, 
proof checker, and choice. The language of CV has an exact intended semantics, where H is 
a proof of F" is interpreted as a corresponding arithmetical formula of provability in Peano 
Arithmetic VA about the codes oft and F (cf. Section 4). A natural axiom system for CV 
along with the completeness theorem of this axiom system with respect to the arithmetical 

semantics was found in [2]. 

The intuitionistic logic Int has an informal Brouwer-Heyting-Kolmogorov (BHK) oper- 
ational semantics ([9], [10], cf. [18], [7], [19]) given in terms of logical conditions on the 
formulas and their proofs. A well-known formalization of the BHK operations is made in the 
Curry-Howard presentation of intuitionistic deductions as typed lambda terms, leading to the 
"■Propositions as Types" paradigm. This duality now plays a key role in some fields of proof 
theory, automated deductions and the logical theory of computation. (Cf. [13] and [15] for 

an impressive current list of applications of proof motivated A-calculi). 

'Center for Foundations of Intelligent Systems, 625 Rhodes Hall, Cornell University, Ithaca NY, 14853 
arteaovehybrid.cornell.edu. Research supported by the ARO under the MURI program "Integrated Ap- 
proach to Intelligent Systems", grant number DAA H04-96-1-0341. 



In the current paper we show how to represent the typed A-calculi in LV directly. Under 
this embedding, the formation rules for the A-terms become admissible rules of CP. In fact, 
the A-calculus for Int can be defined in the Horn Logic of Proofs rlCV, which is the frag- 
ment of the Intuitionistic Logic of Proofs with Horn formulas only, without "proof checker", 
"choice" operations, or nesting of proof terms. The Intuitionistic Logic of Proofs TCP has a 
natural provability semantics with respect to Hey ting Arithmetic UA\ TCP is also a natural 
dynamic counterpart of the intuitionistic modal logic IS4G (cf. [4], [13], [15]). All these give 
a provability semantics for the typed A-calculus and for the modal A-calculus ([13], [15]). 

2    Logic of Proofs 

The language of CP contains 

sentence variables p0,..., pn, ■ ■ •, boolean constants T, _L, 
proof variables xo,.. ■, xn,... 
boolean connectives —>•,... 
functional symbols: monadic !, binary + and • 
operator symbol of the type term: formula. 

Terms and formulas are defined in the natural way: proof variables are terms; sentence vari- 
ables and boolean constants are formulas; whenever s,t are terms \t, (s + t), (s-t) are again 
terms. Boolean connectives behave conventionally, and for t a term and F a formula t: F 
is a formula. We will write st instead of (s • t) and omit parentheses when convenient. If 
x = (ii,..., xn) and T = (Ai,..., An), then we will write x : T for xx: Ax,..., xn: An. The 
intended semantics of this language is: 

proof term = finite set of proofs = nondeterministic proof, 

t:F   =   ut contains a proof for F". 

The basic operations on proof terms are interpreted as application (•), proof checker (!), and 
choice (+). The meaning of these operations is specified in the axiom system for CP below and 
in a precise arithmetical provability semantics in [2] (cf. Section 4). Under this arithmetical 
interpretation H contains a proof for F" is represented by a Godel provability formula in VA. 
The use of the arithmetic is not essential here. CV is taylored to describe any system which 
is able to argue about its own proofs. 



2.1 Definition.   The system CP. 

Axioms: 
Cl. Axioms of classical prepositional logic in the language of CP 
Al  fF —} F "verification principle" 
A2.t:{F->G)  -+{s:F^-{t-s):G) "application" 
A3, t: F -> \t :(t:F) "Proof checker» 
A4. s:F -*•  (s+t):F,      f.F ->  (s+t):F "choice" 

Rules of inference: 

F  F^G 
Q "modus ponens" 

p 
     for any formula F and proof term t 
t. p "necessitation" 

The Necessitation rule reflects the formalization principle: "a given proof can be formalized 
and put into any given finite set of formal proofs". 

The derivations from hypothesises in CP are defined in a usual way with the following conven- 
tion: the necessitation rule can be used only if F is derived in CP without any hypothesises. 

A Terms Specification (TS) is a finite set of formulas tx : Fi,...,tn : Fn provable in CP. 
Each TS may be considered as a partial specification of proof terms ti ;..., tn : as proofs 
for the formulas Fi,..., F„ respecively. Each derivation in CP naturally generates a terms 
specification tx: Fx,..., tn : Fn, consisting of all formulas U : Fi introduced in this derivation 
by the necessitation rule. 

For the usual Gödel proof predicate Proof (x,y) in VA which formalizes the, relation 

"x is a code of a derivation of a formula with a code y". 

there are primitive recursive functions from codes of proofs to codes of proofs corresponding 
to "•" and "!": "•" stands for a operation on proof sequences which realizes the modus ponens 
rule in arithmetic, and "!" is the "proof checker" operation, appearing in the proof of the 
second Gödel Incompleteness theorem (cf. [17], [5]). However, the choice operation "+" is 
already incompatible with the deterministic character of Proof (x,y), where a proof x proves 
only one formula y. Indeed, if s: F and t: G, then both (s + t): F and (s + t): G, i.e. s + t 
proves at least two different formulas F and G. 

The usual proof predicate has a natural nondeterministic version PROOF(x, y) called the 
standard nondeterministic proof predicate 

"x is a code of a derivation containing a formula with a code y". 



PROOF already has all three of the operations of the £P-language: the operation s + t is 
now just a concatenation of (nondeterministic) proofs s and t. 

The "+"-free fragment CV~ of the logic of proofs deserves separate attention as a neutral 
logic of proofs. CV~ does not specify the determinacy of a proof predicate. CV~ can by 
expanded to the operational logic of functional proofs (TCP) developed in [12] by adding a 
special functionality axiom which by means of unification captures on the propositional level 
the deterministic character of a proof predicate (cf. the system T from [1]). 

Logic of (nondeterministic) proofs CV Logic of deterministic proofs TCV 

Neutral logic of proofs CP' 

as An arithmetical completeness theorem for the logic of proofs ([2], cf. 4.1) holds for CV 
well, the proof remains essentially intact. However, the operation "+" is needed to realize 
the entire modal logic and the modal A-calculus. In this paper we consider CV as the basic 

system for the logic of proofs. 

2.2 Comment. No single operator H:" in CV is not a normal modality since none of them 
satisfies the property U{p-*q) -+(t:p ->t:q) for propositional variables p and q. The usual 
Kripke semantics for modal logics does not work for the Logic of Proofs. These make CV 
fundamentally different from numerous multimodal logics, e.g. the dynamic logic of programs 
([11]), where the modality is upgraded by some additional features. In turn, in the Logic of 
Proofs the modality is decomposed into a family of proof terms generated by the operations 
"application", "proof checker", and "choice": 54 is a forgetful projection of CV. 

polymodal logics 

decomposition                               ''upgrading 
Logic of Proofs  Modal Logic     dynamic logic of programs 

logics of knowledge 



This decomposition appeared to be fruitful in revealing the provability content of the classical 
modal logic 54 ([2], cf. also sections 3 and 4 of this paper). Similarly, every structure contain- 
ing the «S4-type modality, e.g. in the modal A-calculus (cf. Section 6), may be decomposed 

by means of £P-terms. 

2.3 Comment.   The usual deduction theorem holds for CV: 

T, A \-£<p B   =>   T \-£<p A^B. 

The standard proof of the deduction theorem remains intact with the new clause when B is 

introduced by necessitation: 

T,A\-CVB 

T,A\-cvt:B 

By the convention on the use of necessitation, \-jr-p t:B and thus T \~cv A-+t:B. Note, that 
the deduction theorem provides a linear time1 algorithm which given a derivation T, A \-£-p B 

constructs a derivation T \~£j> A-¥ B. 

2.4 Lemma. (Substitution lemma for CV). IfT(x,p) h£V B(x,p) for a proposition^ 
variable p and a proof variable x, then for any proof term t and any formula F 

T(x/t,p/F) \-CV B(x/t,p/F). 

Proof.   All axioms and rules of CV remain axioms and rules after a substitution. 

4 

2.5 Lemma. The following rules are admissible in CV. Here A,B are CV-formulas, T, A 
are finite sets of CV-formulas, y is a proof variable, t is a proof term, y and s are vectors of 
proof variables and proof terms respectively, " V-" means " \-£<p ". 

s:r,Ar-B 

Lifting: s:T,y:A\-t{y):B for some t{y); 

xWith a fast access to T,A. 



T,y:A\-t:B 
 — , 

Lowering: I, A r ß 
(provided y does not occur in the conclusion) 

s:T,y:A\-t{y):B 

• Abstraction: s:T\-Xy.t(y):(A^B) 
for some proof term denoted by Xy.t(y) 

(provided y does not occur in the conclusion) 

Proof Lifting. By induction on a proof of B from the premises s: T, A. If B G s: T, then 
s ■ T y : A Hsi : B for some 8i es. If B G A, then Vj : B G y : A for some % G y. If £ is 
an axiom, then t:Bmay be derived by the necessitation rule. Let B be obtained from C, 
C ->• ß by modus ponens. Then, by the induction hypothesis, s : T, y : A I- h(y} : (C -+ B) 
3,nd s:T,y: A \-t2(y):C. for some terms h and t2. By A2, x:T,y: A h {h-t2) : B. Let 
5 = s: C be derived by necessitation from C. Then h s : C and thus h t:(s : C), by one 
more use of necessitation. This proof gives a quadratic algorithm of constructing a proof 

s:T,y:A\-t(y):B from a proof s: T, A h B. 

Lowering. From I\ y : A r- i: B conclude I\ y : A h £. Note that none of the variables 
from y = (yx, ...,»„) occurs in T, A, B. Define an operation ' on £P-formulas: p = p for a 
propositional variable p, ' commutes with boolean connectives and 

,      ( F', if s contains a variable from y 
(s:F) =<   s:(F'),   otherwise. 

By a straightforward induction on the derivation length show that for each F from the deriva- 

tion T,y:A\-B 
f if r,y:At-Fthenr,AI-F' 
| if I- F then h F'. 

In particular, r, A h B. 

Case 1. F is from T, y: A. Easy, since V = T and (y: A)' = A. 
Case 2. F is a propositional axiom. Then F' is the same axiom. 

Case 3. F = s:X-*X. 
a) s is y-free. Then F' = a:X'->X', an axiom Al. 
b) s is not y-free. Then F' = X'^X'. 

Case 4. F = s:(X->Y) -> {r:X-*lsrY). 
a) s, r are both y-free. Then F' is again an axiom A2. 
b) s is y-free, r is not. Then F' = s:(X'->Y') -» (X'-^Y'), axiom A1- 
c) r is y-free, s is not. Then F' = (X'-»Y') -» (r:X'->Y'), derivable in £P since 

r:X'->Y'. 



d) s, r are both not y-free. Then F' = (X'^Y') ->• (X'^Y'). 
Case 5. F = s:X-J.s:(s:X). 

a) s is y-free. Then F' is again an axiom A3. 
b) s is not y-free. Then F' = X'^-X'. 

Case 6. F = s:X ->  (s+r):X. 
a) s, r are both y-free. Then F' is again an axiom A4. 
b) s is y-free, r is not. Then F' = s:X'->X', axiom Al. 
c) s is not y-free. Then F' = Z'^-X'. 

Case 7. F = t:X -►   (s+r) :X. Similar to Case 6. 
Case 8. F is obtained from X, X ->■ F by modus ponens. Then F' is obtained from 

G',X'-+X' by the same rule. 
Case 9. F = s:X is obtained by necessitationfrom X. Then t~£p X and \~£j> s:X. By 

the Inductiopn hypothesis, \~£-p X'. 
a) s is y-free. Then F' = s:X' and \-£-p F' is obtained from \-£<p X' by necessitation. 
b) s is not y-free. Then F' = X'. 

Note that this proof delivers a linear time algorithm of transforming a derivation T,y:A\-t:B 
into a derivation T,AhB. 

Abstraction. By Lowering, from s:T,y: A h t(y) :B get s:T, A 1- JB. By Deduction, get 
s:T\- A^B, and by Lifting, get s:T h r: (A-+.B) for some proof term r. 

2.6 Comment. The term t(y) introduced by the Lifting rule is nothing but a protocol for 
a proof of B from s: T, y: A. The same holds for the rule of Abstraction, where Xy.t(y) is a 
protocol for a proof of A—*B from s:T. 

The Abstraction rule might not look like an operation on terms, because in the the process 
of constructing Ay.i(y) from t(y) we get rid of the latter and seemingly construct Xy.t(y) from 
the scratch. However, this is not the case. A term t(y) is a protocol of a derivation of B 
from s : T, y: A. From this derivation we get a derivation s : T, A h B, then a derivation of 
A->B from s:T. Finally, Ay.t(y) is a protocol for the latter derivation. The proof of 2.5 gives 
a quadratic algorithm which transforms a derivation s:T,y:A h t(y) : B into a derivation 
s:T\-Xy.t(y):(A^B). 

3    Realization of <S4 in CP. 

3.1 Example.   «S4 h (DAAüB) -)■ Cl(AAB). 

In CV this can be reproduced by the following: 

1. A,BhAAB 



2. x:A,y:B\- t(x,y):(AAB), from 1. by Lifting 
3. x:AAy:B\-t(x,y):{AAB) 
4.h{x:AAy:B)^t(x,y):{AAB) 

In fact, here t(x,y) can be taken (cx)y, where c: (A-> {B -+ (AAB))) is introduced by the 
necessitation rule. 

3.2 Example.     54 h (DAVDB) -> □ (AVß). 

In JCT
3
 the corresponding derivation is 

1. AhAVB 
2. BhAvB 
3. x:A \- (a-x):(AVß), where a:(A-> AVB) is obtained by necessitation, 
4. y:ß h (6-y):(AVß), where b:(B -» AVB) is obtained by necessitation, 
5. x:A\- (ax+by):(AvB), y:B h (os+fcy) :(AVB) by A4 from 3, 4. 
6. x:AVy:JBI-(aa;+&y):(AV.B) 
7. h(a;:AVy:ß)->-(ax+6y):(AVß) 

In fact all <S4-theorems have a corresponding operational reading in CV. 

3.3 Definition. By an CV-realization r of a modal formula F we mean an assignment of 
CP-terms to all occurrences of the modality in F. 

Let Fr denote the image of F under a realization r. Positive and negative occurrences of 
modal operators in a formula and a sequent are defined in the usual way. A realization r is 
normal if all negative occurrences of ü are realized by proof variables. 

3.4 Theorem.   ([2]) If SA h F, then CV h Fr for some normal realization r. 

The proof describes a quadratic algorithm which for a given cut-free derivation T in «S4 assigns 
CV terms to all occurrences of the modality in T. 

4    Arithmetical Semantics 

Let us agree to use a new functional symbol t,z(p(z) for each arithmetical formula (p(z) and 
assume that t-terms could be eliminated in the usual way by using the small scope convention 
(cf. [6]). An arithmetical formula <p is provably Ai iff both (p and -iy> are provably Ei. A 
term izip is provably recursive iff (p is provably Ei. A closed recursive term is a provably 
total, and a provably recursive term iz(p such that <p contains no free variables other than 
z. Close recursive terms are our provably recursive names for natural numbers. We have 
to use all of them as proof realizers, since some operations on proofs, e.g. the proof checker 
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"!", depend on the name of the argument, not on its value. Indeed, if PROOF(n,k) holds, 
then PROOF(n + 0,k) also holds, !(n) is a proof of PROOF(n,k) and !(n + 0) is a proof 
of PROOF(n + 0,k). However, !(n) and !(n + 0) deliver proofs of different formulas, thus, 
generally speaking, !(n) ^!(n + 0). 

A proof predicate is a provably Ai-formula Prf(x, y) such that for all <p 

7?4 H ip   &   for some n€«     Prf{n, r<pn) holds. 

A proof predicate Prf(x,y) is normal if 
1) for every proof k the set T(k) = {/ | Prf(k, I)} is finite and the function 

T[k) = tfie code ofT(k) 

is provably recursive, 
2) for every finite set 5 of theorems of VA, S C T(fc) for some proof k. 

The nondeterministic proof predicate PROOF (above) is an example of a normal proof pred- 
icate. 

For every normal proof predicate Prf there are provably recursive terms m(x, y), a(x, y), 
c(x) such that for all closed recursive terms s, t and for all arithmetical formulas <p, if) the 
following formulas are valid: 

Prf(s,r¥>-^"1) A Prf(t,r^)^Prf{m(s,t),r^) 

Prf(s, r^)->Prf(a(s, t),r^),      Prf(t, ^^)^Prf(a(s, t), V1) 

Prf(t, r^)^Prf(cm,rprf(t, W). 

4.1 Definition. An arithmetical interpretation * of >CP-language has the following param- 
eters: 

• a normal proof predicate Prf, 

• an evaluation of sentence letters by sentences of arithmetic, 

• and an evaluation of proof letters by closed recursive terms. 

We put T* = (0 = 0) and i.* = (0 = 1). * commutes with boolean connectives, (t-s)* = 

m(t\ *•), {t + s)* = o(f, «*). (!t)* = c0~**n)> (t:F)* = Pr/(**> rF*n)- Under any interpre- 
tation * an CV-term t becomes a closed recursive term t* (i.e. a recursive name of a natural 
number), and an £P-formula F becomes an arithmetical sentence F*. 

Let TS be a terms specification. An arithmetical interpretation * is TS-interpretation if 
VA\-G* for all GeTS. 



In what follows "arithmetically  T5-valid"  means either "provable in VA under any TS- 
interpretation" or "true in the standard model of arithmetic under any TS-interpretation". 

Note that the reflexivity principle for a modal logic becomes valid in the proof semantics, 
since t:F-+F is provable in VA under any interpretation *. Indeed, let n be the value of t*. 
If Prf{n,rF*^) is true, then VA \- F*, thus VA h Prf{n, rF*^)^F*. If Prf(n, rF*^) is false, 
then VA h ->Prf(n, ""F*"1), and again VA h Prf(n, rF*n)^F*. 

4.2 Theorem.     ([2], Arithmetical completeness of CV) Let TS be an arbitrary terms speci- 

fication, then 
CV\- F with a terms specification TS   <=>•     F* is arithmetically TS-valid. 

Combining 3.4 and 4.1, we obtain the arithmetical completeness of <S4: 

54 h F    «■    Fr is arithmetically TS-valid for some (normal) realization r 
and some terms specification TS. 

Gödel in [8] defined a translation tr of intuitionistic formulas, into 54-formulas where tr(F) 
is obtained from F by boxing all atoms and all implications in F. This Gödel translation is 
shown ([8], [14]) to provide a faithful embedding of Int in «S4. The proof interpretation of 
CV-terms, above provides a faithful proof arithmetical realization of Int: 

Xnt \- F    -»    [tr(F)]r   is arithmetically TS-valid for some (normal) realization r 
and some terms specification TS. 

A direct realization of Int in CV is presented in [3]. 

5    On the Intuitionistic and Horn Logic of Proofs 

5.1 Definition. The Intuitionistic Logic of Proofs, 1CV, is a version of CV (Definition 2.1) 
with the propositional axioms for the intuitionistic logic Int, instead of Cl. 

5.2 Definition. A Horn formula of the language of CV is a disjunction C of literals 
of the form t: F, where t is a proof term with the operations application only, F is a plain 
propositional formula and C has at most one positive literal. The Horn formulas are presented 
below as sequents T => A, with T a (possibly empty) set of positive literals, and A a positive 
literal. The Horn Logic of Proofs %CV consists of the Horn formulas provable in 1CV. 

An inspection of the corresponding proofs shows that the straightforward "intuitionistic" 
versions of Lemmas 2.4, 2.5 (admissible rules in the Logic of Proofs) hold with 1CV and %CV 
instead of CV. 

Under IS4a we mean an intuitionistic modal logic, introduced in [4] (cf. also [13], [15]). 
Theorem 3.4 (realization of modal logic), holds with 1CV instead of CV and IS4D instead 
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of «S4. Therefore, XCV is a dynamic version of IS4D in the same sense as CV is a dynamic 

version of <S4. 
Modal A-calculi for IS4Q have been discribed in [13], [15], where one can also find an 

impressive list of possible applications. As we will observe later, UCV and XCV naturally 
emulate the typed A-calculus for the intuitionistic logic and the modal A-calculus for IS4n 

respectively. Thus XCV naturally contains both: IS4a and the modal A-calculus as its term- 

forgetful projections. 
Also XCV has an intended arithmetical interpretation over Heyting Arithmetic UA in the 

style of Section 4: "t :F' is interpreted as an arithmetical formula 

Proofs ,rF^), 

saying that T is a proof of F* in HA". Thus both TCP and UCV enjoy an intuitionistic 
arithmetical provability semantics, and supply a typed A-calculus for intuitionistic logic and 
a modal A-calculus for IS4a with arithmetical provability semantics. 

6    Logic of Proofs vs Lambda Calculi. 

Now we show how to realize Curry-Howard A-terms for Xnt in UCV, modal A-terms for IS4D 

in XCV (and thus both of these A-calculi in CV). The basic ingradients for that, including 
the rule of Abstraction are all present in Lemma 2.5. 

6.1 Theorem. The following are admissible rules in CV, in XCV and in UCV for the 
corresponding p0, Pi, P, k„, ki, E*y (x,y,u,u0,Ul are proof variables, w is a fresh variable, 

u does not occur in t): 

Ui:Ai,V\-t:C Tr-t-.A   T\-s:B 

{t»:(j4oAAi),r I-t:C}<r T \-p(t,s):{AAB) 
(o is the substitution [ui/piw]) 

x:A,s:T\-t0:C   y:B,s:T h tf.C T\-t:Aj 

W:(AVB),S:T h E%ty{w,to,ti):C T h k,-:(i4oVAi) 

T\-t:A  u:B,T\-s:C w.A,s:T \-t:B 

{w:(A->B),r\-s:C}o- s:T\- \u.t:{A->B) 

(a is the substitution [u/w-t]) 

Proof.     In (A,h) rule we have to find a proof term for p,-. Consider the following chain of 

derivations in CV: 

1. u,:A,-,r r- t(ui):C, by the induction hypothesis, 
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2. r 1- UiiAi-¥t(ui):C, by the deduction from 1, 
3. I- ai-.(A0AAi ->■ Ai), by necessitation, 
4. w:(AoAAi)\- diW.Ai, by application from 3, 
5. W:(A0(TAAI(T)\- aiW.Ai(T, by a - a{w from 4, 
6. a,iw:Ai(T, IV h f(atw) :CV, from 1, 
7. w: (AO0- A AI<T), TO h i(a,ti;) :Co, from 5, 6, 

and then we may put p,- = o,-. 

For the rule (h,A) we have to realize p(t,s): 

1. T\- t:A,s:B, from the premises, 
2. h a:(A-)-(.B->-(AAB)), by necessitation, 
3. t:A,s:ßl-(as)t:(AAß),from2, 
4. T H (as)i:(AA5), from 1, 3. 

Now we put p(w,u) = (a-v)-u. 

For (V,l-) we have to evaluate E^y(w,t0,ti), which is a term built from w,t0,ti. 

1. s:T\-Xx.t0{x)-(A^Ch    *:r •" Ay.ti(y):(B-^C), by Abstraction from 1, 
2. h o:((A->-C,)->((ß->-C)-^(AVß -»• C))), by necessitation, 
3. A».t0(*):(A-»'C7),Ay.ti(y):(B-»-C))to:(AVß) h (a-Ax.io-Ay.ii-w) :C, by application 

from 2, 
4. s:r,w:(AV.B) h (a-Ax.io-Ayiri^-.C, from 1 and 3, 

and we put E^y(w,t0,ti) to be o-Ax.to-Ay.trw, 

In the rule (h, V) we have to find k,. 

1. r h t: A, from the premise, 
2. h 6,-:(A,--+(AoVAi)), by necessitation, 
3. £:Ah (M):(A0VAi), from 2, 
4. T h (bi-t):{AoVAi)t from 1, 3. 

Put k,- to be 6,-t. 

The admissibility of the rule (-¥, =>■): 

1. T,t:A->u:B h s:C, from the premises, 
2. h u>: (ACT -»■ £V) ->■ (t: ACT —>■ wt: JEV), by necessitation, 
3. IV, tiAcr-^iütißcT- h (s:C)o, by substitution <r from 1, 
5. rV,u;:(A0--»B<7) h {s:C)o, from 4, 5. 

At last, the rule (h, ->■) is a special case of the Abstraction rule for CV. 
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6.2 Corollary.   The X-calculus for Int can be realized in the Horn Logic of Proofs so that 

x1:Ai,...,xn'.An=>t:B =► Xl:A!,.. .,xn:An\-t* :B 
is derivable in the X-calculus is an admissible rule of ULV 

for some propof term t*. 

Proof. Take a "sequent style" formulation of the A calculus, e.g. G2i* from [19] and use a 
straightforward induction on the derivations and theorem 6.1. 

6.3 Corollary.   The modal X-calculus can be realized in the Intuitionistic Logic of Proofs: 

x1:Alt...txn:An=>t(£):B =>    xx:A\,.. .,xn:Ar
n hICV t*{x):Br. 

is derivable in the modal X-calculus for some realization r of the modal 
language in CP and some proof term t* 

Proof. As above all the usual steps of A-terms construction can be emulated in the Logic 
of Proofs (here in 1CP). The new "modal" operations on A-terms: "box" and "unbox" are 
naturally represented by Lifting and Lowering (cf. 2.5) respectively. However, in the modal 
A-calculus the types are the plain modal formulas, and in the Logic of Proofs the formulas are 
dynamic. So, in order to apply the admissible rules from 2.5 and 6.1 to stipulate the process 
of A-terms constructing we have to agree the languages of IS4D and TCP by realizing IS4a 

in TCP according to Section 5. Now the chain of trasformations leading from a modal A-term 
t(x) to the corresponding proof term t*(x) is the following: 

1. Take a modal A-term in a full form with premises and types 

xi:Ai,...,xn:An =*• t(x):B, 

where A\,..., An, B are plain modal formulas. 
2. Consider the corresponding IS4o-derivation 

Al,..., An \~lS4a B. 

3. Present this derivation in a dynamic form by the algorithm realizing IS4D into TCP, 
i.e. assign proof terms to all the occurrences of the modalities in the IS4a-derivation above 
to get a similar derivation in TCP: 

A\,...,A'n\-ICVB\ 

Without loss of generality we assume, that the variables for the realization r are all different 
from the ones used in t(x). 
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4. Repeat the formation steps for t(x) from 1 in the I£"P-language using 2.5 and 6.1 to 

get the desired 
x1:A

r
1,...,xn:Ar

n\-Ijßvt*(x):Br. 

6.4 Example. Let us compare two realizations of the ICV-theorem (uAAdB) ->• a(AAB) 
by a modal A-term and by an CV-term. To make things more transparent we will work with 
natural style derivations. The proof in IS4a is 

{DA} {OB} 

B 

{DA}     AVB {□£}     A\/B 

DAVDB D(AVB) a(AvB) 

D(AV5) 

where the brackets { } denote the discharged premises. A corresponding modal A-term in the 
notations of [4] is constructed as follows 

{x-.nA} {y.oB} 

unbox(z):A uiibox(y):B 

{x:OA}    inr-unbox(x):AV5 {y:Dg}    inl-unbox(y): AV.B 

^:(QAVGß) box-inr-unbox(g):a(AV.B) box-inl-unbox(y) :D(AV.B) 

case z of inl(x) then box-inl-unbox(a:)||inr(y) then box-inl-unbox(y) :G(AVß) 

The corresponding J£"P-proof in the notations [t]F for t:F is 

{MA} {MB} 
A B 

{{u}A}      AVB {MB}      AVB 

lulAVJvjB IM(AVB) jbv} (AVB) 

fan + bv}(AV B) 

with the axiom constants specification: la}(A-> (AV B)) and |[&]|(B-»(AV.B)). 
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To construct an I£P-realization we do not need to evaluate all the entries of the proof: 

{MA} {jvjB} 

A B 

x:{[u]A}       AVB V-iMB}      AvB 

z: (M A V jv}B) lp(x): [au] (A VB) h(v)--ibv1(AV B) 

(d-\x.l0(x)-Xy.h(y) -z): [au + bvj(AVB) 

Here l0(x) is the Lifting CV-term. from 

MAhH(AVB) 

x:[u]A\- lo(x):{au]{AWB) 

Zi(y) is the Lifting term from 

MBhjbvKAvB) 

y:[ü]BI-/i(y):[6t;](AVB) 

and d is specified as 
d:{{X->Z) ->((Y->Z)^({XVY)^Z))), 

where X is [tt]A, Y is {v]B and Z is [au + bv\(AVB). 

7    Conclusions 

1. The Logic of Proofs is a very simple extension of the propositional logic by proof terms 
generated by only three operations: unary proof checker, and binary application and choice. 
These operations along with the entire family of proof terms have an exact intended provability 
semantics in arithmetic. In fact proof checker and application first appeared implicitly in 
the Second Gödel Incompleteness Theorem, and the Logic of Proofs discloses a fundamental 
connection of this theorem with the classical modal logic S4, the Intuitionistic logic and the 
A-calculi. 

2. Some basic logical notions can be naturally emulated in the Logic of Proofs, e.g. modality 
and application/X-abstraction. As the result, CP contains 54, the intuitionistic <S4, and modal 
A-calculus as special "term-forgetful" projections. 
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Logic of Proofs 

Intuitionistic Logic of Proofs 

«S4 Modal X-calculus Horn Logic of Proofs 

Intuitionistic S4 X-calculus 

Intuitionistic Logic 

All the usual A-terms constructors may be assumed to be present in CV explicitly. 

3. Proof terms from CV essentially enrich the languages of both the modal logic and the 
modal A-calculus. Proof terms are polymorphic2. A type in CV (i.e. an £P-formula) may 
contain proof terms of any type, including its own. 

4. The operations application, proof checker and choice are characteristics of the language of 
logic, not a particular proof system; the arithmetical semantics for CV covers all recursive self- 
referential systems of proofs, not just natural deductions in propositional logics. According 

to Curry-Howard, 

X-terms = natural deduction proof protocols. 

The Logic of Proofs extends this proof semantics to: 

proof terms = all proof protocols with self-referential capacities. 

Thus the Logic of Proofs places A-calculi in a general provability context. 

5. The computational content of the A-terms is also preserved, since CV allows a compu- 
tational reading of proof terms. In addition, CV contains definable A-terms for all classical 
derivations thus providing a framework for reasoning about constructive and classical proofs 
together, about relatively computable A-terms, etc. 

6. From the technical point of view, CV gives system independent sufficient conditions for 
a logic/theory to contain definable A-terms. To represent the usual A-calculus it suffices to 
have "application of proof terms" operation only, "proofs" of certain propositional axioms, 

2In the Functional Logic of Proofs TCP ([12]) a proof term t has an exact type (a formula, proven by t). 
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no matter in what system, and to enjoy some trivial closure properties, like the deduction 

theorem. 
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